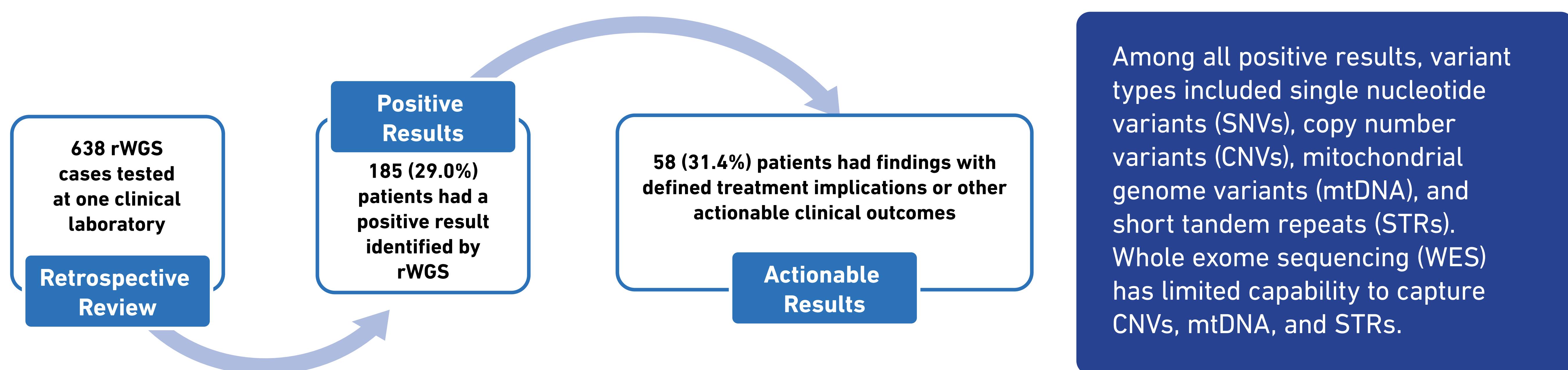


Genomic Diagnosis and Treatment Impact in Epilepsy: Insights from Rapid Whole Genome Sequencing

Leah Campbell, MS, CGC¹, Eileen Barr, MS, CGC¹, Lisa Salz, MS, CGC¹, Sydney A. Lau, MS, CGC¹, Robert Rigobello, MS, CGC¹, Jason Chibuk, MS, CGC¹, Linyan Meng, PhD, FACMG^{1,2}, Fan Xia, PhD, FACMG^{1,2}, Christine Eng, MD^{1,2}


¹ Baylor Genetics Laboratory, Houston, TX, USA.

² Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.

P225

INTRODUCTION

- Genetic factors play an impactful role in the etiology of many seizure disorders and epilepsies, with over 1500 related genes identified.¹
- Rapid whole genome sequencing (rWGS) offers genome-wide analysis of many types of genetic variants in just a few days and is increasingly employed in the diagnostic evaluation of epilepsy. Results can inform clinical management, including the implementation of targeted therapies.
- The National Society of Genetic Counselors and the American Epilepsy Society strongly recommend genome sequencing as first-tier testing for all individuals with unexplained epilepsy.²
- This study presents a clinical cohort of patients with seizures and/or epilepsy to demonstrate the clinical utility of rWGS in guiding treatment decisions.

Selected Genes and Actionable Outcomes	
SCN1A (Dravet syndrome)	Patients with SCN1A-related disorders may respond positively to stiripentol (Diacomit®), cannabidiol, and fenfluramine (Fintepla®) as well as a ketogenic diet. ³ Antisense oligonucleotides are also being investigated as a potential therapy but are not currently available for clinical use. ⁴
POLG-related disorders	Treatment is largely based on symptoms, but valproic acid, sodium divalproate, and medications that rely heavily on liver metabolism should be avoided. ⁵
ALDH7A1 (pyridoxine-dependent epilepsy)	Conventional antiepileptic drugs are ineffective - the condition must be treated with vitamin B6 (pyridoxine) supplementation. Combining pyridoxine with lysine reduction therapy is associated with improved outcomes. ⁶
MECP2 (Rett syndrome)	Trofinetide (Daybue®) is an approved treatment for patients with Rett syndrome. ⁷

METHODS

Study Design: Retrospective review of rWGS results

Inclusion Criteria:

- rWGS completed at one clinical laboratory
- Clinical indication includes epilepsy or infantile spasms

Analysis:

- We reviewed the clinical and genetic data to determine the frequency of "positive" results (defined as pathogenic and likely pathogenic variants associated with epilepsy or seizures) detected by rWGS.
- Among positive results, genes with known treatment or management implications were identified via literature review.

Variant type	Number of findings	Would WES capture?
SNVs	148	Likely*
CNVs	30	Limited
mtDNA	5	No
STRs	2 (ATXN8OS, DMPK)	No

*Deep intronic and non-coding variants may not be captured by WES

CONCLUSIONS

- rWGS identified a genetic diagnosis within days in approximately 1 in 3 patients with seizure-related concerns; one-third of these cases involved conditions with actionable medical management implications.
- Several positive findings likely would have been missed by panel-based or exome sequencing.
- rWGS is an important tool to reduce time to diagnosis and inform treatment decisions in patients with seizures.