

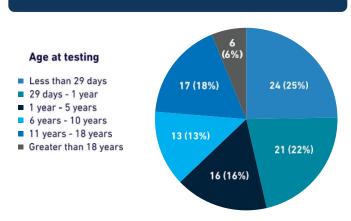
Baylor College of Medicine

The Diagnostic Yield of Whole Genome Sequencing for Patients with Epilepsy

Arpita Neogi MS, CGC¹, Robert Rigobello MS, CGC¹, Jason Chibuk MS, CGC¹, Carli Andrews MS, CGC¹, Linyan Meng PhD, FACMG¹², Liesbeth Vossaert PhD, FACMG¹², Christine Eng MD^{1,2}, Fan Xia PhD, FACMG^{1,2}

- 1 Baylor Genetics Laboratory, Houston, TX, USA.
 2 Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA

BACKGROUND


- Whole Genome Sequencing (WGS) is a comprehensive test that investigates a large number of genes and multiple variant types.
- · WGS is increasingly being adopted as a first-tier diagnostic tool for various neurodevelopmental disorders per guidelines from the American College of Medical Genetics and Genomics (ACMG).
- · However, there is limited information on the utility of WGS for epilepsy disorders.
- · In this study, we reviewed the diagnostic yield of WGS for patients presenting with epilepsy.

RESULTS

Retrospective Review 1164 consecutive clinical cases tested by WGS or rWGS **Epilepsy** 274 (24%) patients had epilepsy as part of their personal and/or family history Diagnostic Yield The overall diagnostic yield of WGS of this epilepsy cohort

Most patients were under the age of 18 at testing

was 35.4% (97/274)

METHODS

Study Design: Retrospective review of WGS results

Inclusion Criteria:

- · WGS or rapid WGS (rWGS) completed at one clinical laboratory
- Clinical indication includes epilepsy

Analysis:

We reviewed the clinical and genetic data to determine:

- The frequency of "positive" results (defined as pathogenic and likely pathogenic) detected by WGS/rWGS
- · The variant types identified by WGS/rWGS

Most positive results were obtained from rWGS

Type of test for positive results

Variant types included single nucleotide variants (SNVs), copy number variants (CNVs), mitochondrial variants and short tandem repeats (STRs).

Number of findings
82 (85%)
2 MT-TL1, MT-TV) 1
15 (15%)
2 (CTSB, ATXN80S) 3 (Trisomy 21 and 45,X) 1 1 (Angelman syndrome)

Conclusions:

- · WGS identified a genetic diagnosis in over 1/3 of patients with epilepsy.
- · WGS detected genetic variations that are often missed by targeted or panel testing.
- · Most positive results came from rapid WGS, which is a time-sensitive option for critically ill patients.
- Altogether, these data support the use of WGS for patients with epilepsy.